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Modeling background intensity in DNA microarrays

K. M. Kroll

Interdisciplinary Research Institute, Cité Scientifique BP 60069, F-59652 Villeneuve d’Ascq, France and Institute for Theoretical Physics,

Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3000 Leuven, Belgium

G. T. Barkema

Institute for Theoretical Physics, University of Utrecht, Leuvenlaan 4, 3584 CE, Utrecht, The Netherlands and Institute-Lorentz for

Theoretical Physics, University of Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

E. Carlon
Institute for Theoretical Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3000 Leuven, Belgium
(Received 20 December 2007; published 18 June 2008)

DNA microarrays are devices that are able, in principle, to detect and quantify the presence of specific
nucleic acid sequences in complex biological mixtures. The measurement consists in detecting fluorescence
signals from several spots on the microarray surface onto which different probe sequences are grafted. One of
the problems of the data analysis is that the signal contains a noisy background component due to nonspecific
binding. We present a physical model for background estimation in Affymetrix Genechips. It combines two
different approaches. The first is based on the sequence composition, specifically its sequence-dependent
hybridization affinity. The second is based on the strong correlation of intensities from locations which are the
physical neighbors of a specific spot on the chip. Both effects are incorporated in a background estimator
which contains 24 free parameters, fixed by minimization on a training data set. In all data analyzed the
sequence-specific parameters, obtained by minimization, are found to strongly correlate with empirically de-
termined stacking free energies for RNA-DNA hybridization in solution. Moreover, there is an overall agree-
ment with experimental background data and we show that the physics-based model that we propose performs
on average better than purely statistical approaches for background calculations. The model thus provides an

interesting alternative method for background subtraction schemes in Affymetrix Genechips.
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I. INTRODUCTION

DNA microarrays have become a powerful tool to moni-
tor the gene expression level of thousands of genes simulta-
neously on a genome-wide scale (for a recent review see, for
instance, Ref. [1]). Microarrays are based on the hybridiza-
tion between the surface-bound DNA sequences (called
probes) and DNA or RNA sequences in solution (called tar-
gets). The probes are designed to have a sequence exactly
complementary to that of the desired target sequence one
wishes to detect in solution. As the target molecules in solu-
tion are labeled with fluorescent markers, the amount of hy-
bridized targets can be determined by means of optical mea-
surements. The fluorescence intensity measured at a specific
spot on the microarray reflects the concentration of comple-
mentary targets in the used sample solution.

One of the most prominent commercial platforms of DNA
microarrays is provided by Affymetrix [2]. By virtue of in
situ photolithographic techniques Affymetrix produces arrays
in which more than 1 X 10° different probes are grafted on a
single chip. The probes are 25-nucleotide-long sequences of
single-stranded DNA. As a single 25-mer may not provide
reliable measurements of the expression level of one specific
gene, Affymetrix chooses 10-16 fragments of different re-
gions for each gene, which together form a so-called probe
set. Each probe set is to uniquely characterize a given gene.

One of the problems of the data analysis is that the mea-
sured fluorescence signal does not only contain information
about the concentration of a specific gene in solution, but
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also of other sources of hybridization with fragments which
only partially overlap with the surface-bound sequence.
Thus, the measured fluorescence of a given probe site can be
written as

I=1y+1,(c), (1)

where I;,(c) is the specific contribution of the signal which
depends on the concentration ¢ of the complementary target
in solution and /;, is a background signal. The aim of this
work is to introduce a model which is based upon inputs
from physical chemistry for the calculation of I, for Affyme-
trix arrays. Identifying the main sources of background in-
tensity is crucial in order to make accurate and reliable esti-
mates of gene expression levels mainly for weakly expressed
genes, for which I,,(c) =1,

A peculiarity of Affymetrix Genechips is that probes
come in pairs: a probe, the so-called perfect match (PM), has
a sequence exactly complementary to the sequence in solu-
tion. A second probe, physically located as neighbor of the
PM in the chip, has a single noncomplementary base with
respect to the specific target. The latter is known as mismatch
(MM). Originally, MMs were supposed to estimate only the
nonspecific hybridization; i.e., it was expected that I,,,,=~ I,
so that from Eq. (1) one could have estimated I,,(c)=1py
—1I;y- However, this approach experiences some difficulties
as in some chips as many as 30% of the MM intensities are
higher than the corresponding PMs [3] (although this seems
to occur predominantly in low-intensity regimes, where both
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PM and MM signals may be dominated by nonspecific hy-
bridization [4]). Moreover, it has been found that I,;,, also
depends on the concentration in solution of the almost-
complementary target sequence. Hence the background ad-
justment based on the difference Ipy,— 1, currently does not
receive much consensus and other strategies have been de-
vised [5]. For a discussion of MM hybridization see also
Refs. [6-8].

Due to its central importance, the modeling of back-
ground intensities is not new. One can distinguish here be-
tween models using a purely statistical treatment [9-12] and
others where physical inputs coming from equilibrium ther-
modynamics were employed [13-17]. A more extensive dis-
cussion of previous studies in relation with our results is
postponed to the final section of this paper.

In this paper we present a method to estimate the back-
ground noise of Affymetrix gene expression arrays. We con-
struct a function which contains 24 parameters, fixed by
minimization on a set of training data. The function takes
into account the physical chemistry of hybridization by a
subset of the 24 parameters. These parameters depend on
sequence composition and are equivalent to the stacking free
energies in the nearest-neighbor model [18]. We also exploit
the observation that the background signal of a given site
strongly correlates with the intensities measured on neigh-
boring sites. The accuracy of the results is tested on a set of
spike-in data in which transcripts are added in solution at
known concentration. In particular, being interested in the
accuracy of our background predictions, we focus on the data
at zero concentration. The model developed in this paper
reproduces the spike-in data very well, and in this particular
case it performs better than other popular algorithms used for
background adjustment in Affymetrix expression chips.

This paper is organized as follows: the background esti-
mator is introduced in Sec. II. The results of the minimiza-
tion are given in Sec. III, where they are tested on the
spike-in data set and compared with the prediction of other
algorithms. Finally in Sec. IV we present a general discus-
sion of the results obtained and provide some general con-
clusions.

II. MODEL

Our approach to estimate the background intensity is two-
fold. First, we make use of the property of Affymetrix mi-
croarrays that neighboring probes have similar sequences
and hence also similar affinities for nonspecific binding. We
recall that a fluorescence image from an Affymetrix chip is
contained in a file giving the (x,y) coordinate of the probe
and the corresponding measured intensity. By setup a PM
probe is located at (x,y), with odd y, and the corresponding
MM probe is located at (x,y+1). Hence the chip is arranged
in rows of PM and MM sequences, as shown in Fig. 1. PM
and MM pair probes share all nucleotides but the middle
(13th) one. Hence there is a strong sequence correlation be-
tween rows with odd y and rows at y+ 1. But the sequences
of neighbors along the x direction are also correlated, as part
of the microarray design.

The main idea of our approach is to use MM intensities as
background estimates for the PM signals only for genes that
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FIG. 1. (Color online) Schematic view of the two main ingredi-
ents for the background functional developed in this paper. (Left)
Background intensity is correlated with the fluorescence signal
measured from neighboring spots. (Right) The background depends
also on the sequence dinucleotide composition and on the relative
distance of the dinucleotides from the surface; i.e., inhomogeneities
are taken into account.

are sufficiently low expressed—i.e., for which both PM and
MM signals are low on the global scale of intensities in
Affymetrix chips. An estimator is built up and optimized
around these low-intensity data (to be defined more precisely
later), which can then be applied to the whole chip, thus also
in the high-intensity regimes. Let us consider a MM at posi-
tion (x,y). Because of correlations with the neighboring se-
quences, its intensity value will be correlated with the inten-
sities of the neighboring sites in the chip. In particular, we
consider the weighted average of intensities of the two
neighboring MMs at positions (x* 1,y), of the correspond-
ing PM (x,y-1), and of the two PMs at positions (x=* 1,y
—1), as shown in Fig. 1. Differences in sequences tend to
cause Gaussian fluctuations in the effective affinities, hence
in the logarithm of the intensities 7(x,y)=In I(x,y), rather
than in the intensities. The local dependence of the back-
ground estimator takes thus the form

DocalX:Y) = Po+P1(x+ 1,y) + panlx — 1,y) + p3plx + 1,y
=D +pynpx=1Ly—=1)+psnlx,y-1), (2)

in which p;, i=0,...,5, are weight factors, constrained by
Els=0p i= 1.

A completely different indicator of the background inten-
sity is purely based on the probe sequence. A well-known
model to estimate the affinity between a DNA probe and its
complementary RNA target is the nearest-neighbor model
[18]. Here, the affinity is given by a summation over pairs of
neighboring nucleotides, in which each term can take 16 dif-
ferent values, depending on whether the sequence is AA, AC,
AG, AT, ..., GG. We expect that the background signal is due
to the binding to the probe sequence of short fragments of
sequences from other genes, which are complementary to the
probe over some fraction of its total length. We introduce 16
pair strengths p,g (With @, 8 € {A,T,C,G}) as fitting param-
eters.

To approximately incorporate the effects of “unzipping”
of the DNA-RNA hybrid on its top and bottom, we add a
parabolic weighting as a function of the position along the
probe, around the middle of the probe at km=12%. In the
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fabrication of the chip the majority of probes does not reach
its full length of 25 nucleotides. The effect of length varia-
tion is modeled by linear deviations in this weighting func-
tion as well. In total, this yields

24

77seq(s) = 2 2 51;,3(5)17013[1 + (k - km)pl + (k - km)zpp]»
k=1 a,B

(3)
with @, Be{A,T,C,G} and where

1 if sp=a and s, =8
(Sk - k k+1 s 4
ap(s) 0 otherwise. “)

Here s, indicates the kth oligonucleotide of the sequence
s(x,y) of a total length of 25 letters. Summing over all pos-
sible letters «, B is equivalent to counting the frequency of
each pair a8 within a given sequence s(x,y). The 16 param-
eters p,p reflect the influence of each pair a8 on the back-
ground intensity. According to the nearest-neighbor model,
the parameters can be used to describe the formation of
RNA-DNA hybrid duplexes [19]. Also here, we expect that
our approximations lead to a more or less Gaussian spread-
ing in the effective affinities. The sequence-based estimation
of the background intensity is then given by I, (x,y)
=expl 7ye4(5)].

We then combine the two different estimates for the back-
ground affinity with arbitrary weights:

In I(X,)HS) = 77()5»)’25) = 7710cazl(x9y) + ”veq(s)’ (5)

where the relative weight for the first estimate is absorbed in
the parameters p,—we no longer enforce the restriction
32 ,p;=1—and the relative weight for the second estimate in
the parameters p ..

We proceed by constructing a cost function whose mini-
mization allows to obtain estimates of the 24 parameters in
Eq. (5). We write the cost function as an average over all
probes of the squared difference between the actual back-
ground affinity and the prediction 7(x,y;s’) :

1
== > [In Ly - nlxy:s) P (6)

5" ()

Here, s'(x,y) is a subset of N sequences which includes only
sequences of those MM intensities whose corresponding PM

intensities are below a certain threshold i (in Affymetrix

units) and which themselves do not exceed i to exclude
bright MMs from the analysis [3].

Equation (6) incorporates Affymetrix’ original idea of us-
ing MM intensities as background measures. Strict selection
rules need to be imposed on the input data [s'(x,y)] to en-
sure that only those experimentally obtained values of I,
are used which can be clearly attributed to background noise,
and not to hybridization with the target complementary to the
corresponding PM probe. But how do we find a criterion
which identifies and filters the undesired probes? Fortunately,
the spike-in data at concentration ¢=0 (for details, see Sec.
III A) can be used as reference for background noise. By
comparing the I, histograms of the input and spike-in data
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(¢=0), a threshold intensity i can be found such that both
histograms are strongly correlated. In the present work, the

threshold intensity is set to i =350, resulting in a discard of
25%-30% of the data. For comparison, saturated probes
have intensities around 12 000.

The optimization algorithm used to perform the minimi-
zation of the cost function given in Eq. (6) is steepest descent
with damped Newtonian dynamics, in which Eq. (6) is inter-
preted as potential energy. The value obtained from the mini-
mization procedure can be used as a measure for the quality
of the attained minimum.

III. RESULTS
A. Experimental data

In the present work, we analyze data from Affymetrix
microarray experiments which are publicly available under
[20,21]. The results (scanned intensities) of each experiment
are saved in a so-called “CEL file” (extension CEL). For
each probe, the CEL file contains information about its
physical location on the chip (x and y coordinates) and the
mean intensity. The CEL file does not contain any informa-
tion about the probe set name or sequence. For further pro-
cessing the so-called CDF file (chip description file) is
needed. Each CEL file is associated with a CDF file which
allows the retrieval of the information necessary to map each
probe to its corresponding probe set. The sequence informa-
tion can be found in the probe-tag file. The probe-tag file
contains the name of each probe, its location, an Affymetrix
specific probe interrogation position, the sequence, and the
target strandedness. The latter file is particularly useful if one
wishes to investigate the sequence dependence of the mea-
sured intensities.

Affymetrix offers a large palette of gene expression arrays
for different organisms. In this work, we focus on the analy-
sis of two human genome chip sets—namely, HGU95A and
HGUI133A—and two nonhuman organisms, the African
clawed frog (Xenopus laevis) and the zebrafish (Danio rerio).
All four chip sets are used, in a first step, to investigate and
validate the correlation between well-known hybridization
stacking energies and the 16 parameters of Eq. (5) (see Sec.
III C). As a second step, we focus our attention on a subset of
the HGU95A and HGU133A data sets, the so-called Latin
Square Experiments [20]. Those experiments serve as cali-
bration experiments as some target sequences are added at
controlled concentrations (“spiked-in”) to a background ref-
erence solution. The target concentrations range from 0 pM
to 1024 pM. Since the spike-in experiments at zero concen-
tration measure pure background, we use them as benchmark
for our background estimator, Eq. (5).

B. Neighbor-dependent parameters

As discussed in Sec. II, the intensities of neighboring
probes can be used to estimate the nonspecific binding of a
given probe, because of the design of Affymetrix microar-
rays. However, Eq. (2) takes only five neighbors into ac-
count, although each spot on the array is surrounded by in
total eight neighbors—four direct and four diagonal neigh-
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bors. Equation (2) originally included eight parameters, but it
turned out that the intensity correlations with the “top”
neighbors at (y+1) (see Fig. 1) on the background intensity
are much smaller than the (y—1) row. The analysis of the
correlation between sequences which are neighbors in the
array explains why the (y+1) neighbors are less useful.

For the HGU133A array all four nucleotides are roughly
equally present; i.e., A, C, G, and T densities are 0.239,
0.248, 0.243, and 0.269. A consequence is that with two
randomly chosen nucleotides, the probability of finding the
same letter is 25.05%. However, the probability of finding
the same letter at the kth position at sites in (x,y) and (x
+1,y) [or equally at (x—1,y)] is 48.29%. This probability
increases to 96% when considering the neighbors (x,y) and
(x,y—1), for even y, which is not surprising as the probes at
these locations are a pair of PM and MM, which share 24 out
of 25 oligonucleotides. The probability of finding the identi-
cal nucleotide at (x,y+1) for y even is 37.58%. We thus see
that the sequence correlation along the x direction clearly
exceeds the correlation along the y direction except when
considering corresponding PM and MM probes. Because of
this, the three “top” neighbors were not considered any fur-
ther in order to restrict the computational effort to a mini-
mum (see Fig. 1).

The function minimization shows another interesting pat-
tern: the three closest neighbor parameters p;, p,, and ps are
positively correlated with the background signal, while the
diagonal neighbors p; and p, show negative correlations [the
correspondence between p; and positions can be deduced
from Eq. (2)]. This result (i.e., py, pa, ps=>0 and p3, p,<0)
is found in all chips analyzed. Typical average outputs on
human genome chips of the Latin Square experiments are

{p1s ....pst = {0.06,0.08,- 0.04,— 0.03,0.35}.  (7)

The interpretation is as follows: The MM signal is most
strongly correlated with its corresponding PM, as reflected
by the magnitude of ps. The sequence at (x,y) is closely
correlated with the two MM neighbors (x* 1,y) (parameters
p and p,); i.e., a strong background intensity at (x*1,y)
corresponds to a strong background at (x,y). However, a
strong signal of the MM probes at (x*1,y) may also be
caused by the presence of complementary target molecules at
high concentrations in solution. The function corrects for this
with negative coefficients for the signals at positions
(x*=1,y—1) (parameters p; and p,).

C. Sequence-dependent parameters

The nearest-neighbor model is widely used to describe the
thermodynamics of duplex formation of nucleic acids in so-
lution as it yields good approximations of the sequence de-
pendence of duplex stability (see, e.g., [18]). It is based on
the assumption that the stability of each base pair depends on
the identity and orientation of the adjacent base pairs. For a
given sequence s of N nucleotides the hybridization free en-
ergy is given by
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N-1

AG =2 X 8 5(5)AG g+ AGin(s1.5y), (®)
k=1 a8

where AG g are the stacking free energies associated with a
pair of nucleotides af8; 5’;B counts the frequency of the pairs
af along the sequence and was defined in Eq. (4). In Eq. (8)
we have added a term which depends on the end nucleotides
s; and sy and it is referred to as helix initiation parameter
AGinit'

The parameters AH,z and AS,; from which one obtains
AG=AH-T AS are known from hybridization experiments
in solution. Due to symmetry considerations, there are only
ten independent AG,z in the case of DNA-DNA duplexes
(see Table II of [22]). There are no such symmetries in RNA-
DNA duplexes; hence, there are in total 16 parameters,
which were determined experimentally by Sugimoto et al.
[19]. Even though the nearest-neighbor model was originally
developed to calculate duplex free energies in solution, it
provides reasonable approximations to describe the energet-
ics involved in the hybridization processes on Affymetrix
microarrays [14,16]. A recent experimental study [23] on a
class of spotted arrays in which the hybridization of perfect
matching and multiple mismatching probes was analyzed
showed that the data are well described by nearest-neighbor
parameters for duplex formation in solution.

Our approach to model the background intensity involves
the determination of 24 parameters of which the 16 param-
eters p,p reflect the influence of each pair @8 on the back-
ground intensity. The relationship between the 16 parameters
Pap and the 16 stacking parameters AG .z is quickly derived.
According to the Langmuir model the measured intensity / at
a given site is related to the hybridization free energy AG via

]« e—AG/RT' (9)

Recalling that the sequence-dependent estimator 7, given
in Eq. (3) is fitted to the logarithm of the intensity [see Eq.
(5)] one expects that the parameters p,z are linearly related
to the stacking free-energy parameters AG 4. To verify how
far this linear relationship holds, all 16 parameters p,g are
calculated for each CEL file—i.e., each chip by the minimi-
zation of the cost function, Eq. (6). Then, each p,g is aver-
aged over all available CEL files of a given chip set and
plotted as a function of AG,z given in Ref. [19]. Two of
these plots for the Latin Square set are shown in Fig. 2. The
plots indicate that the linear relationship between p,z and
AG p is approximately verified. The correlation coefficients
for the linear fit are typically about 0.83. Table I reports the
correlation coefficients for H. sapiens, X. laevis, and D. rerio
chip sets. The results show that our ansatz to include the
nearest-neighbor model in the background estimation is jus-
tified and the influence of the pairs is not to be neglected.

D. Benchmark: Spike-in data

To test the accuracy of the predicted background signal as
given in Eq. (5), we turn our attention to the spike-in data.
Concerning background analysis, we are naturally most in-
terested in the ¢=0 spike-in data as the measured signal is
pure background noise. By virtue of Eq. (5) we calculate the
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FIG. 2. Parameters p,g, as obtained from the minimization of
Eq. (6) on a training data set, plotted as function of AG,g, the
nearest-neighbor stacking free energy obtained from DNA-RNA hy-
bridization in solution [19]. The two figures refer to (a) average of
19 experiments of the HGU95 (1521) spike-in data set (b) average
of 42 experiments of the HGU133A spike-in data set. The error bars
are the standard deviation. Notation of DNA pairs are from 5 to 3’
ends. The straight lines are linear fits to the points. The correlation
coefficients of the fits referring to these and to other experiments
analyzed are given in Table L.

background signal 7 for a given probe set of the Latin
Square data for the chip sets HGU95A and HGU133A.
Figure 3 is representative for the results of HGU95A and
HGU133A. In general, we find that the predicted background
intensity # nicely follows the PM-MM intensities of the
spike-in experiments at zero concentration and hence really
describes the shape of the background. One would expect the
PM and MM values at zero concentration to be almost iden-
tical; this is mostly the case as the median value of the dif-
ference (PM—MM)yguosa=28 for HGU95A shows. This
value is even smaller for the HGU133A chip set—i.e., (PM
~MM)yguisza=21. Exceptions where either the PM or MM
intensity clearly exceeds the median difference suggest the
presence of transcript fragments which are complementary to
the probe over a length of more nucleotides than one would
statistically expect when considering background issues. Es-
pecially the origin of bright MMs has been investigated in-
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TABLE I. Correlation coefficients of the linear fits of the p,g
parameters obtained from minimization of the background func-
tional and the hybridization free energies AG,g for RNA-DNA du-
plex formation in aqueous solution taken from Ref. [19]. The data
are for human chip sets (HGU95A sets, HGU133A) of the Affyme-
trix Latin Square experiment and of Xenopus laevis (XL) and Danio
rerio (DR) arrays.

Chipset No. of CEL files Corr. coeff
HGU95A (1521) 19 0.870
HGU95A (1532) 19 0.869
HGU95A (2353) 19 0.861
HGUI133A 42 0.791
XL (GSE 3334) 6 0.805
XL (GSE 3368) 20 0.806
XL (GSE 4448) 31 0.792
DR (GSE 5048) 6 0.847

tensively in the recent past (see, e.g., [3,6,7]).

E. Comparison to other approaches

Figure 4 compares the performance of our background
estimator 7 to three of the most commonly used algorithms:
namely, MAS5.0 [10,11], RMA [17], and GCRMA [24]. MAS5.0
is a commercial software for data analysis developed by Af-
fymetrix. For our calculations we used the free version of
MAS5.0 available under the open project Bioconductor [5].
RMA and GCRMA are two variants of the same type of algo-
rithm, both freely available from Bioconductor.

In order to compare the performance of the background
subtraction schemes, we calculated

1
=ﬁ2[ln Ipy=In I, (10)

i.e., the average squared deviation of the predicted back-
ground signal I, from MAS5.0, RMA, and GCRMA and from
our algorithm with respect to the experimental background
intensity /p),. The sum in Eq. (10) runs over all M probes in
the Affymetrix spike-in experiments at concentration c¢=0.
The examples of Fig. 4 show that MAS5.0 underestimates
the background values and hardly deviates from a straight
line. MASS5.0 uses the lowest 2% of probe intensities of each
region of a chip to estimate a background value. Each probe
intensity is then background corrected based upon a
weighted average of each of the background values. A de-
tailed description can be found in [10,11]. The background
adjustment method used by RMA [17] uses a global model for
the distribution of probe intensities. It is based on empirical
findings on the distribution of probe intensities and only con-
siders PM values as input as well as output. However, RMA
does not take nonspecific binding into account which often
leads to an underestimation of the background. GCRMA [24]
is based on RMA and includes sequence information to cal-
culate a so-called affinity measure. The results of GCRMA
excel those of RMA and MAS5.0. However, we have found
that in some cases after background subtraction GCRMA gives
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FIG. 3. (Color online) Signal intensities for PM (crosses) and
MM (circles) for three probe sets plotted as function of the probe
numbers. The data are for three spikes at ¢=0 (zero concentration
means that the target are absent from the solution). The probe sets
are (a) 38734_at (HGU95A—15211), (b) AFFX-r2-TagE_at
(HGU133A—Expt4_R1), and (c) 209795_at (HGUI33A—
Expt13_R1). The solid line shows the background estimate based
on the function of Eq. (5).

a higher value of the intensity compared to the original data,
which signifies a negative background correction. For these
points we have set In I,=1 in Eq. (10).

Table II reports the value of the mean-squared deviation
calculated from Eq. (10). Smaller values of this parameter
signify a more accurate algorithm for the background esti-
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FIG. 4. (Color online) Examples of comparison of the perfor-
mance of MAS5.0 (triangles down), RMA (triangles up), and GCRMA
(squares) with the algorithm developed in this paper (diamonds).
The crosses (PM) and circles (MM) are the zero-concentration
spike-in data. The data shown are for the probe sets (a) 36202_at
(HGU95A—1521g), (b) 1708_at (HGU95A—1532b), and (c)
209606_at (HGU133A—Expt10_R1).

mation. Table II indeed shows that globally our physical-
chemistry-based algorithm, indicated as column 7, outper-
forms the three other statistical-based algorithms. As already
anticipated by the graphs in Fig. 4, the performance of
GCRMA is generally far better than MAS5.0 and RMA. Our
algorithm improves further on GCRMA in all cases analyzed,
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TABLE II. Average squared deviation of four human genome
chip sets according to Eq. (10) where I=1Ipy;.

d n RMA MASS.0 GCRMA
HGUI133A 0.161 0.521 1.589 0.194
HGU95A-1521 0.163 0.760 1.127 0.200
HGU95A-1532 0.203 0.698 1.041 0.343
HGU95A-2353 0.099 0.508 0.777 0.088

except for the last set (HGU95A experiment 2353) of Table
1L

IV. DISCUSSION

We have introduced a model to predict background inten-
sities in Affymetrix Genechips. Our model takes into account
the physical chemistry involved in hybridization as well as
the influence of the design of Affymetrix microarrays. The
background estimator developed in this paper contains two
terms given by Egs. (2) and (3) that reflect these two contri-
butions.

The sequence-based background estimate [Eq. (3)] in-
cludes 16 pair-strength-parameters p,g. Physical-chemistry
arguments suggest that these parameters are correlated with
the hybridization free energies AG 4 for the corresponding
couple of nucleotides. One expects an approximate linear
relationship between the two. The fact that the parameters
Pap are indeed linearly correlated with the hybridization free
energies in solution, as shown in Fig. 2, suggests that the
model presented here captures the origin of the background
correctly. We recall that hybridization in Affymetrix expres-
sion arrays is between a DNA strand at the microarray sur-
face and an RNA strand in solution; therefore, the hybridiza-
tion free energies to compare with are those for RNA-DNA
duplexes. These were determined experimentally by Sug-
imoto et al. [19]. It is worth mentioning that a previous study
[13] of microarray data analysis using physical-chemistry in-
puts, although in a different way than what is developed
here, reported a weaker correlation (r=0.6) between fitted
affinities and the experimental parameters by Sugimoto et al.
[19]. In the experimental data considered in this study we
find a correlation coefficient ranging from r=0.79 to r
=0.87 (see Table I) for the three different organisms ana-
lyzed. In our opinion, a good correlation with experimental
stacking free energies provides a first important test of reli-
ability of the analysis.

In our model, a second contribution to the background
function is given by the intensities at the locations that are
physical neighbors on the microarray [Eq. (2)]. The neighbor
influence is understood as coming from the fact that neigh-
boring locations have similar sequences, as a consequence of
the design of Affymetrix microarrays: similar sequences im-
ply similar background contributions. The local contribution
to the background depends on five parameters which mea-
sure the strength of the correlations. As pointed out in Sec.

PHYSICAL REVIEW E 77, 061915 (2008)

III B the magnitude and signs of these parameters can be
understood in terms of sequences similarities.

We compared the background intensities predicted by the
estimator presented in this paper with the experimental data.
The latter are spike-in Affymetrix data [20] in which few
sequences are added in solution at known concentration. The
spike-in data set is used to develop and test algorithms for
Affymetrix microarrays data analysis. In particular we con-
sidered the data at zero spike-in concentration, which mea-
sure pure background. We used these data to compare the
performance of our algorithm to the other algorithms
MAS5.0, RMA, and GCRMA. This comparison is summarized
in Table II, showing the average squared deviation from the
logarithm of the intensities at zero spike-in concentration.
The results show that our algorithm and GCRMA perform
much better than both MAS5.0 and RMA. In the tests per-
formed we noticed that GCRMA follows closely the experi-
mental background, but it may “fail” substantially in few
probes of a probe set. This can also be seen in the examples
of Fig. 4. These failures lower the performance of GCRMA,
compared to the physical-chemistry algorithm presented
here.

The algorithm developed here does not take into account
some other effects as spatial gradients or smudges. These
effects probably play a minor role in Affymetrix Genechips
compared to spotted microarrays. Actually, the local neigh-
bor dependence partially incorporates some gradient effects:
if the background is higher in some parts of the chip so it is
in its neighbors entering in Eq. (2), which causes a higher
contribution of the local dependence with respect to se-
quence dependence in our background function. However
here the correlation is limited to the nearest physical neigh-
bors and there are other ways to incorporate gradients by
taking into account average intensities on larger chip areas. A
thorough investigation of this effect is left for future work.
As the present analysis is based on the minimization of a cost
function, the inclusion of further effects will only improve
background estimates. In this work we focused on what we
believed are the two major sources of background, compro-
mising computational speed and accuracy.

In conclusion, the algorithm developed in this paper pro-
vides good quality results for background estimates com-
pared to existing algorithms and provides an interesting al-
ternative for background subtraction schemes in Affymetrix
Genechips. Even though we have shown that the perfor-
mance of our background estimator is satisfying, hopefully
there is still room for improvement.
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